GG 6220
Spring Semester, 2005
Theoretical Seismology Course Outline
1. Review of elastic wave theory
a.
Dynamic wave equations
b. Potential solutions
c.
Generalized Snell’s law
d.
Complex velocity and attenuation
2.
Normal mode dispersion and surface waves
a.
Boundary conditions and period equations
b. Love and Rayleigh waves
c.
Group and phase velocity dispersion curves
d.
Haskell-Thompson propagator matrix
e.
Earth structure from dispersion curves
f.
Normal mode formulation
3.
Transmission and reflection of seismic waves
a.
Propagator matrix formulation
b.
Boundary conditions
c.
Inhomogeneous wave conditions
d.
General scattering propagator matrix
4.
Ray theory
a.
Asymptotic ray theory
b.
Propagator matrices
c.
WKBJ approximations
d.
Gaussian beam ray theory
5.
Plane wave decomposition
a.
Tau-p methods
b.
Radon transforms
c.
Slant stacks
6.
Source representation theory
a.
Betti’s representation theorem
b. Reciprocity
c. Earthquake source theory
7. Earthquake kinematics and dynamics
a. Elastodynamics: static and
dynamic dislocation models of faulting.
b. Source parameters: fault area,
displacement, stress drop and moment.
c. Radiation of energy and fault
plane solutions.
d. Body wave modeling
e. Seismic moment tensors
8.
Full wave theory--Cagniard de Hoop solutions
a.
Sharpes' solution
b.
Sommerfeld-Weyl integrals
c.
Cagniard's solution for SH waves--singularities, inhomogeneous waves
9.
Full wave, reflectivity theory
a.
Reflectivity methodology
b. Propagator matrix
Return to GG6220 home