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ABSTRACT

This study develops a quantitative probabilistic assessment of the fault
displacement hazard along the Wasatch fault, Utah. The displacement hazards
associated with the Wasatch fault are important to consider based on the fault’s .
potential seismic activity, the proximity to the Wasatch Front population, and the
number of critical “lifeline” utilities (i.e., roads, pipelines, power lines, railroads) that
cross the fault.

A probabilistic displacement hazard analysis (PDHA) has not been done on
the Wasatch Front until now; only probabilistic seismic hazard analyses (PSHA)
associated with ground shaking have been done.

The results of this study are the generation of fault displacement hazard curves
for the Brigham City, Weber, Salt Lake City, Provo, and Nephi segments of the
Wasatch fault. These hazard curves allow the determination of the annual frequency
of exceeding a specified fault displacement at any location along these segments of
the Wasatch fault.

The input data and parameters used in this study are based on existing
paleoseismic data from the Wasatch fault, an elliptical fault displacement distribution
along fault length, fault displacement-magnitude scaling relationships, and slip rate

and recurrence intervals from paleoseismic studies. Additionally, this study took into



consideration both single segment fault rupture and multisegment fault rupture
scenarios. Although this study considered these select parameters and scenarios when
developing the hazard curves, the model developed in this study allows for the
incorporation of as few or as many scenarios as a user might need.

Depending on which specific scenario is considered and the specific location
along the Wasatch fault, the results from this study yield annual frequency of
exceeding 1 meter of displacement between the range of 10*/year to 107/year. For 2
meters of displacement the annual frequency of exceedance ranged between 107 /year
to 10°%/year. For 3 meters, the values ranged between 10 /year to 10" /year. Since
this is the first PDHA to be done for the Wasatch faulit, the results of this study could
not be compared directly to other studies. However, an indirect comparison to other
types of hazard studies (including PSHA) done on the Wasatch fault yields similar
values.

Given the results of this study, the distribution of the Wasatch Front
population, and the proximity of the lifeline utilities to the fault, the Wasatch fault
displacement hazards could have a much more profound effect than considered
heretofore. Disruption of the Wasatch Front’s critical lifeline utilities from fault
displacement may very well have as large of an impact on a the Wasatch Front
population as ground shaking.

The results of the PDHA, in combination with the PSHA, an exposure analysis
and review of the economic impact, can be used to evaluate the overall earthquake

risk on the Wasatch fault.
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INTRODUCTION

This study develops a quantitative probabilistic assessment of the fault
displacement hazard along the Wasatch fault, Utah and complements previous
probabilistic assessments of ground motion hazards on the Wasatch fault. In
combination, these assessments will make possible a comprehensive review of

earthquake related hazards.

Wasatch Fault Displacement Hazards

The displacement hazards associated with the Wasatch fault are important to
consider due to the proximity of the fault to the populated Wasatch Front and its
rupture effects on the “lifeline” utilities (i.e., roads, pipelines, power lines, railroads)
that cross it.

The Wasatch fault is a 370-kilometer long, normal fault zone (Hecker, 1993)
(Figure 1). More than 80 percent of Utah’s 2.1 million people live within 50 miles of
the Wasatch Fault. Figure 2 shows the large number of “lifeline” utilities that cross
the fault and their proximity to the Wasatch Front population base (personal
communication, V. Solomon, 1999).

The maximum credible earthquake that has been estimated for the Wasatch

fault is a moment magnitude, M,,, 7.3 on the basis of Wong and others (1995). Using
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Figure 2. Wasatch Front “lifeline” utility and population base map. Map
generated from existing utility datebase and may not be complete
(V. Solomon, personal communication, 1999).



Wells and Coppersmith’s (1994) scaling relationship (discussed in detail later)
between M, and maximum displacement yields a maximum displacement of 3.6
meters for the maximum expected magnitude. A conservative range of possible (not
maximum) magnitude earthquakes on the Wasatch fault is M,, 6.8 to a M,, 7.0. Again,
using Wells and Coppersmith’s (1994) scaling relationship, these magnitude values
correspond to 1.4 meters and 2.1 meters, respectively.

In regards to the integrity of the lifeline utilities, this range of fault
displacements (1.4 — 3.6 meters) would most certainly jeopardize the integrity of the
facilities, if not sever them completely. This could have a potential devastating

impact of the Wasatch Front population.

Seismicity of the Wasatch Front

The Wasatch fault is part of the Intermountain Seismic Belt (ISB), which is a
well-studied zone of seismicity that extends from southern Nevada and northern
Arizona, through the major fault zones of Utah and eastern Idaho, to northwestern
Montana. The ISB is estimated to be at least 1,500 kilometers in length and 100 to
200 kilometers wide (Smith, 1971; Smith and Arabasz, 1991). From studies of other
normal faults in the ISB, Smith and Arabasz (1991) modeled the Wasatch fault as a
55-degree, west dipping, planar, normal fault that extends approximately 15
kilometers deep to the brittle ductile transition zone.

Smith (1971) evaluated the potential for the occurrence of an earthquake on
the Wasatch fault by considering seismic gaps, or the lack of seismic activity in a

known seismically active zone. Areas with unusually low seismicity and evidence of



previous large earthquakes may be indicative of an area with a relatively higher
probability for future large earthquakes (Smith, 1971; Smith and Sbar, 1974). With
respect to the Wasatch fault and Utah’s population base, Smith (1971) concluded that,
based on a gap of seismic activity of the central Wasatch Front, there could be a
raised potential for a major earthquake in this area. The central Wasatch Front is
shown to include Utah’s most heavily populated area between Ogden and Provo
(Smith, 1971).

Furthermore, Chang and Smith (1998) compared rates of historic and
paleoearthquakes and concluded that the estimated annual frequency of large
paleoearthquakes is about a factor of four times higher than that extrapolated by
historic seismicity. Additionally, Chang and Smith (1998) derived the frequency of
earthquakes on the Wasatch fault from geodetic and GPS data and found that these
rates do not match those of paleoearthquakes and may form the upper bound of
earthquake occurrence.

Given this background and the possible future seismic activity on the Wasatch
fault and the critical location of the fault in relation to Utah’s population base and
lifeline utilities, the potential consequence of fault displacement hazards along the

Wasatch fault is justification for this study.

Seismic Hazard Studies of the Wasatch Fault

A probabilistic displacement hazard analysis (PDHA) of the Wasatch fault has
not been conducted; this study is the first PDHA on the Wasatch fault. Several

probabilistic seismic hazard analyses (PSHA) of the Wasatch fault have been



conducted (Youngs and others, 1987; Wong and others, 1995), but have been limited
to ground shaking hazards. PSHA ground motion studies have been used for the past
20 to 30 years (Kramer, 1996), and the methodologies are quite well developed.
Probabilistic seismic hazard analyses that consider the fault displacement hazard
(PDHA), on the other hand, have not often been considered in the past, and the
development of this methodology is of current interest.

Specific to the Wasatch fault zone, several ground shaking seismic hazard
studies have been completed. @ Youngs and others (1987) made the first
comprehensive, quantitative assessment of the ground-shaking hazard on the Wasatch
Fault. Youngs and other’s (1987) method was probabilistic in nature and the results of
the study were expressed as the probability of exceeding a specified level of ground
motion. The study produced a set of maps showing the probability of exceeding
specified peak ground accelerations of 10 percent in 10 years, 50 years, 250 years at
specified locations.

Wong and others (1995) conducted a seismic hazard analysis of the Magna
Tailings impoundment near Magna, Utah. Wong and other’s (1995) study included
both a deterministic ground motion assessment and a probabilistic seismic hazard
analysis. Wong and others (1995) considered several seismic sources around the Salt
Lake Valley, including the Wasatch fault. In their hazard analysis, Wong and others
(1995) determined the source, magnitude, and peak ground acceleration of the
maximum earthquake at the site and the operating basic earthquake at the site, and
they concluded that there is a low potential for surface rupture at the impoundment

site.



With respect to evaluating different types of earthquake hazards (e.g., ground
motion and fault displacement), Ward’s (1994) study presented the idea of a
multidisciplinary approach to evaluating seismic hazards in Southern California.
Ward’s study described the importance of developing a “master model”, which
combines geodetic, geologic, and seismic information to evaluate earthquake hazards.
Subsequent to Ward’s (1994) work, the Working Group on California Earthquake
completed a multidisciplinary report that addressed the probable seismic hazards in
Southern California for the period of time between 1994 and 2024. Ward’s (1994)
work and the Working Group’s (1995) is the basis for much of the probabilistic

earthquake hazard studies in the United States today.

General Approach to Probabilistic Displacement Hazard Analyses

A displacement hazard analysis model specifically developed for fault
displacement hazards has been limited to the 1997 development of a preliminary
probabilistic model for the proposed nuclear repository at Yucca Mountain, Nevada.
This model is summarized by Coppersmith and Youngs (1997) and detailed in the
Yucca Mountain Reports (CRWMS M&O, 1998). In essence, this methodology used
for the Yucca Mountain was adapted from the traditional PSHA as is discussed in
greater detail later in this section. Based on the information available, the traditional
PSHA methods and the recent Yucca Mountain Report (CRWMS M&O, 1998)
provided the framework for the study presented here.

The traditional approach to PSHA has been summarized by Kramer (1996)
and includes four general steps (Figure 3a). The first step includes the identification,

characterization, and probability distribution of the potential rupture location. Next is



the development of a recurrence relationship. Third is the determination of ground
motion potential at specified sites, and the last step is the incorporation of the
uncertainties associated with the calculations.

The general steps used for the PDHA, as adapted from Kramer’s (1996)
summary of the PSHA methodology (Figure 3(a)), are shown in Figure 3(b).
Following these general steps, the approach for assessing the annual frequency of
exceeding a specified displacement, d, first involved developing an empirical
distribution for the available normalized fault displacement data. The displacement
data were normalized with two normalizing parameters: the average displacement,
D,,, and the maximum displacement, D,,,. The normalized data were fit with
empirical distribution models to develop a cumulative distribution function for the
displacement data. The resulting function was used to compute the conditional
probability of exceeding a specified displacement, given a displacement event, Dy,
which when multiplied by the frequency of displacement events, Apg, lead to the
determination of the annual frequency of displacement exceedance.

Finally, this model allows the uncertainties inherent in estimating seismic
events to be methodically evaluated by means of a logic tree. A logic tree is a tool
used for calculating the cascade of uncertainties associated with multiple scenario

models. The uncertainties were identified, quantified, and systematically evaluated in
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order to provide a comprehensive view of the fault displacement hazards along the
Wasatch fault. With this, the logic tree took into account the uncertainties associated
with estimating the probability of fault rupture, contagion effects, frequency
estimates, and the normalizing parameters.

This probabilistic displacement hazard analysis (PDHA) develops hazard
curves that quantify the probability of exceeding specified fault displacements at
various locations along the Wasatch fault. The results of this study will enable an
analytical evaluation of the potential degree of physical property risk associated with
fault displacement. The information from this study combined with the information
from a PSHA, exposure analysis, and the economic impact, can be used to evaluate

the overall risk due to fault displacement hazards on the Wasatch fault.
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EARTHQUAKE HAZARD ASSESSMENTS
AND MODEL PARAMETERS

Approaches to Earthquake Hazard Analyses

In general, there are two approaches to assessing earthquake hazards:
deterministic and probabilistic. Hanks and Cornell (1999) describe that for
earthquake hazards, the fundamental difference between deterministic and
probabilistic analyses is that a deterministic analysis is time independent, whereas a
probabilistic analysis is time dependent. In other words, a deterministic analysis
allows for an infinite time window and a probabilistic analysis is dependent upon time
or the frequency of the occurrence of events. In essence, the deterministic analysis
considers the maximum or worst case, i.e., it is viable for all time. Both types of
analysis allow for the incorporation of uncertainties; however, deterministic studies
typically have not incorporated them. The systematic inclusion of uncertainties has
more commonly been associated with probabilistic analyses.

The probabilistic approach is well suited to this study in that it allows for the
consideration of a range of displacements at various locations where there are time-
dependent rates of earthquake occurrences. This is in comparison to a deterministic
approach, which would consider only the maximum displacement at a specific

location or limited locations.
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Approaches to Fault Displacement Hazard Analyses

More specific to fault displacement hazards, Youngs and others (in
preparation) describe that there are two basic approaches to fault displacement
hazards: earthquake and displacement. Young and others (in preparation) describe
that the earthquake approach is related explicitly to the occurrence of an earthquake.
In contrast, the displacement approach uses characteristics of fault displacement site
observations, and is not explicitly related to the occurrence of an earthquake. The
methodology for both the earthquake and displacement approaches has been adapted
from traditional PSHA processes. Since the fault displacement data are available for

this study, the fault displacement approach was utilized.

Principal and Secondary Faults

This study considers only principal faults and neglects secondary faults such
as the West Valley Fault and other faults beneath the valley fill (Figure 1). In
describing the methods for PDHA, Youngs and Coppersmith (in preparation) and the
Yucca Mountain Reports (CRWMS M&O, 1998) differentiate between principal and
distributed faults. Principal faults are considered to be the faults located at the source
of the seismicity. Distributed faults are considered to be secondary faults, both in
time and space, i.e., secondary faults may not occur coincident with primary faults
and are not located at the seismic source, but can be a distance from and can be
triggered by activity on the principal fault. The subject segments of the Wasatch fault
are considered the principal fault source and the outlying faults shown in Figure 1 are
considered to be distributed faults. Additionally, the model developed for this study

is limited to normal faulting earthquakes, characteristic of the Wasatch fault.
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Earthquake Magnitude Scales

Earthquake magnitude values used in this study are based on the worldwide
moment magnitude scale, M,,. It should be noted that much of the data that is used in
this study is based on the commonly used surface wave magnitude, M, and Richter
local magnitude, M; scales. Mason (1996) notes that others (Kanamori, 1977; Hanks
and Kanamori, 1979; Wells and Coppersmith, 1994) describe a close one to one
correlation between M, and M,, and Wells and Coppersmith (1994) derived a one to
one relationship between M; and M,,, both for the magnitude range 6.0<M<8.0. With
this, magnitude data values given in the M, or M; scale between the range 6.0<M<8.0
were given an equal M, value (Appendix B). For values less than M 6.0, there are
empirical scaling relationships between these different magnitude scales; however,

they are not needed for this study.

Magnitude and Displacement Scaling Relationships

Scaling relationships between magnitude, fault rupture length, and fault
displacement for normal faults have been developed by Wells and Coppersmith
(1994) and Mason (1996). These empirical equations and comparisons of their values
are given in Appendix B. For the purpose of this study, the magnitude-length-
displacement relationship described by Mason (1996) was used, in that both length
and magnitude are available (Appendix B).

Fault Displacement Distribution along Fault Length

Currently, there are several methods in use for modeling the distribution of

fault displacement along fault length. Cowie and Scholz (1992) describe that observed

13



data indicate that fault displacement is proportional to fault length, however, there are
various interpretations of how to model this relationship. Cowie and Scholz (1992)
further describe that, when compiling published data sets relating fault displacement
and fault length, some describe the relationship as linear and others as nonlinear.
Further, others describe that this relationship is dependent upon rock properties.
Although any of these methods could be used, this study considers only the
model that describes an elliptical fault displacement distribution along the fault
length. The elliptical distribution model, described by Wheeler (1989), was based on
normal fault slip data from the ISB. It represents that the maximum fault
displacement occurs at the midpoint of the fault length and the displacement tapers at
the segment endpoints (Figure 4). Furthermore, by fitting an elliptical distribution to
existing Wasatch fault displacement data, Chang and Smith (1998) describe it as a

plausible distribution for the fault displacement on the Wasatch fault.

A
D / : Dmax

L2

Figure 4. Cartoon illustration of elliptical fault displacement, D,
distribution along fault length, L.

FAULT DISPLACEMENT DATA
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Although the Wasatch fault has not ruptured historically, detailed paleoseismic
studies at various sites along the fault show evidence of late Holocene surface
faulting. These surface faults have allowed insight into the magnitude, timing, and
fault displacement of these events.

Hecker (1993) describes that the geologic information used for the
characterization of fault-related hazards includes the timing and time distribution
between successive events, the fault displacement and fault length of each event, and
the rate at which the fault slips. Numerous studies have published these characteristic
data for each of the Wasatch fault segments.

Five main segments of the Wasatch fault were considered in this study. The
five segments from north to south are the Brigham City segment, Weber segment, the
Salt Lake City segment, the Provo segment, and the Nephi segment (Figure 1). From
Chang and Smith’s (1998) summary of published fault information, the approximate
delineated lengths of each of these segments are 38, 61, 46, 70, and 40 kilometers,
respectively, with a total length of approximately 255 kilometers.

Chang and Smith (1998), working informally with J. McCalpin, compiled
published trench/exposure information from the following sources: Personius (1991),
Machette and others (1992), McCalpin and others (1994), Black and others (1995),
Lund and others (1991), and Jackson (1991). Chang and Smith’s (1998) compilation
of paleoseismic event data for each of the study segments, including the event’s
limiting age and net vertical displacement, is shown in Table 1.

Using the elliptical fault displacement distribution model described earlier,

average and maximum displacement values, D,,, and D,,, respectively, were

15



determined for each of the five subject segments. Chang and Smith (1998) calculated
the maximum displacement values for each segment by fitting an elliptical envelope
to existing fault displacement data. The average displacement values were calculated
as the average value under elliptical envelope. Table 2 shows the fault length,

maximum displacement, and average displacement for each segment.
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TABLE 1

Paleoseismic data from the Wasatch fault

Fault- Trench/ Limiting Ages Net Total Vertical
Exposure= (cal. Yr. B.P)+ Displacement (m)++
Brigham BC 2,125 £ 104 1.0
3,434 + 142 2.5
4,674 + 108 2.5
PP 4,600 +500 0.7~1.3
Weber GC 1,016 + 62 1.0
1,500 ~ 2,000 1.0
EO 800 ~ 1,200 09~2.2
2,500 ~ 3,000 22~35
3,500 ~ 4,000 22~25
KV-88 600 ~ 800 1.7~1.9
2,800 + 700 23~34
5,700 ~ 6,100 1.4
Salt Lake City SFDC 1,230 + 62 0.9~2.7
2,499 + 138 0.5~3.8
3,940+ 216 0.8
5,381+ 136 1.4~22

=See Figure 1

= Published data compiled and tabulated Chang and Smith (1998)
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TABLE 1 continued

Fault- Trench+ Limiting Ages Net Total Vertical
(cal. Yr. B.P)+ Displacement (m)++
Provo AFC 618 +£30 22~2.7
2,842 £ 72 22~2.7
5,481 + 152 22~2.7
RC 950 ~ 1,150 2.5
MN, MS 600 + 80 14~3.0
2,820 (+150/-130) 0.8~2.8
WC 1000 £ 200 0.75~1.0
Nephi NC 1148 £ 68 20~22
3,864 + 238 20~25
4,500 ~ 5,000 2.6
Red Cyn 1,300 (+600/-700) 1.4+0.3
3,000 ~ 3,500 1.5+0.2
4,000 ~ 4,500 1.7+0.3

*See Figure 1

= Published data compiled and tabulated by Chang and Smith (1998)

18




TABLE 2

Fault length, average displacement and maximum displacement
values for Wasatch fault segments

Fault Segment | Fault Length Maximum Average
(km)* Displacement, D,,,, | Displacement, D,,,
Brigham City 38 1.7 1.2
Weber 61 2.5 1.7
Salt Lake City 46 2.0 1.4
Provo 70 3.0 2.1
Nephi 40 2.4 1.7

* Fault length values documented by Chang and Smith (1998)

** Maximum displacement values were calculated using elliptical distribution for
fault displacement along fault length as calculated by Chang and Smith (1998).
*** Average displacement values were calculated as average value under elliptical

envelope

19




METHODOLOGY

Cumulative Distribution

The initial step taken to calculate the annual frequency of exceedance was to
determine the statistical cumulative distribution function of the normalized fault
displacement data, F(d/D,,,). Benjamin and Cornell (1970) describe that for
discrete, random variables the cumulative distribution is the sum of the probability
mass function values over the values less than or equal to a specified value that a

random variable can assume. This relationship is given by:

Fye(x) = 3 px(x;) [1]

X;<Xx

where X is a random variable and x is the specified value of the random variable.

Thus for this study the cumulative distribution function takes on the following form:

FD(d/Dnorm)= EpD(d/Dnorm) [2]

d/D

//////

where D is the random variable (occurrence of displacement) and d is the specified
value of the random variable (threshold displacement). D, is the normalizing

variable.
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As shown by equation [2], the cumulative distribution for the Wasatch fault
displacement data was determined using normalized trench displacement data. This
was done by normalizing the mean displacement data, D, from each of the trench sites
(Table 1), with the average displacement, D,,,, and maximum displacement, D,
values for each segment (Table 2). The normalized data (for each segment) were then
pooled together to develop a cumulative distribution for all five segments, under the
assumption that the same normalized distribution applies to each of the each

individual fault segments.

Distributions for Normalized Displacement Data

To determine the cumulative distribution function, F(d/D,,,,), the normalized
displacement data, D/D,,.,, was plotted and fit with the following empirical
distribution models: normal, gamma, lognormal, and exponential. These distributions
are commonly used in engineering applications when representing discrete, random
processes. All except the normal distribution assign zero probability to negative
values of the variable; however, D/D,,,., is limited to non-negative values. The
normal distribution is symmetrical and the others are skewed to the right. For these
reasons, these four distribution models were used to fit the statistical displacement
data.

The normal distribution is defined by the mean and standard deviation of the

random variable and is given by Equation [3]:
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2
RYP i) 3
x ( / 3]

\/%fe © dx
0

F(x) =

where x was set equal to D/D,,,, and wu is the mean value of D/D,,,, and o is the
standard deviation of D/D,,,,,.

The gamma distribution is given by Equation [4]:

x/b

R -t.a-1
@) ge t“ T dt [4]

F(x)=

where I'(a) is the gamma function. In this model, x was set equal D/D,,,, and the
function constants, a and b, were determined using the method of moments.
The lognormal distribution, like the normal distribution, is completely defined

by the mean and standard deviation of the random variable. It is given by Equation

[5]:
2
Z = Win(x
| In(x) -2 071()\%
Fx)=—/—= [ e ) gy [5]
\lzncln(x) 0

where x was set equal to D/D,,,,., , z was set equal to the natural log of D/D,,,,,, and n
and o are the mean and standard deviation, respectively.

The exponential distribution is given by Equation [6]:
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F(x)=1-e™* [6]
F(x) is the cumulative distribution function where x is set equal D/D,,,,, and u is the
mean value of D/D,,,,,.

The statistical and empirical cumulative distribution functions for the
displacement data normalized with D,,, and D, are shown in Figures 5 and 6,
respectively. Based on regression correlation coefficients, °, (shown on each plot in
Figures 5 and 6) the gamma distribution showed the best empirical fit to the statistical
distribution for the displacement data normalized with D,,, (Figure 5). The lognormal
distribution showed the best empirical fit to the statistical distribution for the

displacement data normalized with D, (Figure 6).

Conditional Probability

Given the cumulative distribution function, F(d/D,,,), the conditional
probability that D/D,,,., exceeds a specified threshold value of d/D,,.., given a

displacement event, Dy, is shown by the expression

plo/p,, >d/D,, D, |-1-F@/D

norm norm )

norm )

It should be noted that the difference between the probability and the conditional

probability is the dependence upon a specified condition. In this study, the
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probability that D/D,,, will exceed d/D,,.,, given a displacement event, is a
conditional consideration.

Using the empirical distributions with the highest correlation coefficients, the
conditional probability curves for d/D,,,,, used for this study were generated using the
gamma distribution model for F(d /D,,,) and the lognormal distribution model for F(d
/D,.a) (Figure 6). It should be noted that the curves shown in Figures 6 represent the
conditional probability of exceeding the specified normalized displacement value at
any point along the fault, with the assumption that the cumulative distributions used
to generate the curves represent the cumulative distribution of each individual
segment.

With this, the conditional probability of a given displacement exceeding a
specified displacement, given a displacement event, P(D>d | D), can be determined
by applying the conditional probability for the normalized displacement (Equation 7
and Figure 7) to displacement distribution for each segment. Thus, a specific
conditional probability curve for each segment can be generated. Individual
conditional probability curves are not shown for each segment, but the values are
incorporated into the final annual frequency of exceedance calculations (Appendix

D).

Annual Frequency of Exceedance

The ultimate value of interest is the expected annual frequency of exceedance of
a specified displacement, v(d), and the resulting hazard curves. This study considers

this value on a segment specific basis. As outlined in general by Kramer (1996) and
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more specifically in the Yucca Mountain reports (CRWMS M&O, 1998), v(d) can be
estimated by taking the product of the frequency of displacement events, Apg, and the

conditional probability, P(D>d |Dy), as expressed by Equation [8]:

> d /DHOI'IH )

v (d) = >\'DE ¢ P[(D/Dnarm DE ]= }\’DE ¢ [1 - F(d /Dnorm )] [8]

The frequency of displacement events, Apg, for each segment was calculated
by one of two methods: 1) fault slip rate and 2) recurrence interval. According to
McCalpin and Nishenko (1996), these are both fundamental descriptors of seismic
activity, and both are critical components to be considered when determining hazards
associated with earthquakes.

Other methods for evaluating the frequency of displacement events could be
used, but were not considered in this study. One such method is the renewal time
method, which considers fault stress loads. By considering only the slip rate and
recurrence interval methods for estimating the frequency of events, the assumption is
made that the calculated frequency of displacement events is valid for all time, i.e.,

long term and short term.

Slip Rate

Kramer (1996) describes that the fault slip rate, SR, is a measure of the amount
of slip on a segment averaged over a time period that encompasses multiple ruptures.

Also explained by Kramer (1996), this method does not require the recognition of the
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date of the activity, but more simply, the displacement and time between individual
events. Youngs and Coppersmith (1985) considered the implications of using fault
slip rate and recurrence models on a PSHA. In their discussion, Youngs and
Coppersmith (1985) describe that using the slip rate to estimate earthquake recurrence
assumes that the long-term average slip rate is representative of the “overall” slip rate
(i.e., the short-term slip rate).

It should be noted that geologic data assume that the full vertical offset is
coseismic, meaning that all of the vertical fault displacement occurs with the
earthquake. However, recent findings suggest that as much as 20 percent of fault slip
may occur after the initial fault rupture and displacement (personal communication,
R. Smith, 1999). Since we are not able to distinguish coseismic versus noncoseismic
slip from geologic data, this study assumes that the full displacement offset occurs
during the fault rupture.

When using the slip rate method to determine the frequency of displacement
events, Apg, the frequency can be calculated by dividing the D,,, value of each

segment, into the SR for that same segment as given by the following expression:

[9]

The slip rates for each segment were calculated by Chang and Smith (1998) and are

shown in Table 3. The mean slip rate values were used in the frequency of
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TABLE 3

Slip rate and recurrence interval values for the Wasatch fault

Fault Segment Slip Rate Recurrence Intervals
(mm/year)* (year)**
Brigham City 0.94 £0.03 1,558 + 49
Weber 1.71 £ 0.69 1,468 + 528
Salt Lake City 1.48 £0.53 1,345+ 112
Provo 2.17+1.20 1,827 + 1,067
Nephi 1.74 £0.93 1,932 + 1,109

* Average slip rate for fault segment from Chang and Smith (1998)
*#* Average recurrence intervals on fault segment (includes time to present) from
Chang (1999, unpublished)

exceedance calculations. The D,,, values were determined using the previously

described elliptical distribution model (Table 2).

Recurrence Interval

Like the slip rate method, the recurrence interval is an important tool in
estimating the frequency of events. Keller (1996) defines the average recurrence
interval on a fault or fault segment as the average time span between two earthquakes.
For the purpose of this study, the recurrence interval used is the average time interval
between two fault displacement events.

The recurrence values used for this study were taken as the average of the time

difference between two successive displacement events in a particular fault segment.

30



Again, the recurrence interval was used under the assumption that the calculated
recurrence interval is representative of the near-term interval. The recurrence
intervals shown in Table 3 used for this study are from Chang and Smith (1998) and

were derived using the previously described elliptical model.

Logic Tree Development

When conducting studies involving natural phenomena, there is considerable
uncertainty incorporated into calculations when selecting accurate models and
parameters to characterize the natural phenomena. In this case, it is the
characterization of the displacement hazards along the Wasatch Fault. Youngs and
others (1987) explain that this uncertainty may arise from limited statistical
information or there may be multiple interpretations of the information that is
available.

To further describe the uncertainties inherent in these calculations, Hanks and
Cornell (1999) make the distinction between aleatory uncertainty and epistemic
uncertainty. Aleatory uncertainty relates to the uncertainty in the randomness
associated with natural events; whereas, the epistemic uncertainty relates to the
uncertainty in the information describing or characterizing natural event. Given this
description of uncertainties, the uncertainties associated with this study are epistemic
in nature. For this study, the sources of uncertainty include the errors in estimating
the rupture scenarios, estimating of the frequency of displacement events, errors in the

fault displacement data, and the variables used for normalizing the displacement data.
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The epistemic uncertainties inherent with these types of calculations are
commonly incorporated by means of a logic tree. As described by Youngs and others
(1987), logic trees are a methodical means to express uncertainties associated with
scientific calculations. For the purpose of this study, the epistemic uncertainty was
incorporated using a logic tree.

Logic trees systematically allow for the mathematical formulation of
probability multiplication and are comprised of a sequence of nodes and branches.
Every node has a single branch or a series of branches extending from it. Also, each
node represents an input parameter used in the analysis. Each node represents
discrete events and each branch represents one possible interpretation of the
parameter under evaluation. Probabilities or weights are assigned to each branch
coming off of the node. The probability, or weight, represents the relative likelihood
of that branch having the accurate representation of the parameter under
consideration. With each branch carrying a relative weight, there is a conditional
assumption that, at each node, the sum of the weights is unity. Therefore, logic tree
probabilities take into consideration the probabilities associated with each sequence of
nodes and branches.

The uncertainty or relative weight assigned to each branch will be carried
through the calculations for the entire branch. Slight variations in an assigned branch
weight (i.e., 0.8 versus 0.9) will have differing impacts on the end result, or value at
the end of a logic tree branch. For example, as branch weights of 0.8 and 0.9 are
multiplied through the branch calculations the end value will not vary only by the

percent difference between 0.8 and 0.9. The percent difference between these values
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will propagate through the calculations and the end results will be less than just the
percent difference between 0.8 and 0.9. With this, careful consideration should be
taken when assigning relative weights to each branch.

In constructing the logic tree, a sufficient number of branches and nodes
should be selected to accurately reflect the uncertainty in estimating the hazard
probability. The general layout of the logic tree used in this study is displayed in
Appendix A.

The point should be heavily emphasized that with the logic tree, any number
or combination of scenarios can be considered. The scenarios that are considered in
this study should by no means be considered the limit. Additional or different

scenarios can and should be considered in subsequent studies.

Logic Tree Parameters

Fault Rupture Scenario

The Wasatch fault was first characterized as being comprised of six to ten
discrete segments (Swan and others, 1980; Schwartz and Coppersmith, 1984). It has
been proposed that these segments are independent of each other, both seismically
and structurally. A related hypothesis by Schwartz and Coppersmith (1984) describes
that “characteristic” earthquakes, or earthquakes of a given magnitude, are
characteristic of an entire, individual fault segment. With this, Schwartz and
Coppersmith (1984) proposed that a “characteristic” earthquake would rupture the
whole length of a segment and would not rupture across segment boundaries. Both of
these proposed theories support the idea that the Wasatch fault is comprised of

discrete, single segments.
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Chang and Smith (1998) considered the possibility of multisegment earthquakes
on the Wasatch fault. Although multisegment earthquakes on the Wasatch fault have
not been observed directly, Chang and Smith (1998) postulated a multisegment
scenario based on the effects of stress loading and concluded that there are various
possible multisegment scenarios on the Wasatch fault.

In addition to the results of stress modeling, Chang and Smith (1998) evaluated
the Wasatch fault paleoseismic data, which included time and displacement data from
the individual segments. By fitting the displacement data with the elliptical fault
displacement along strike model, Chang and Smith (1998) concluded that there is a
possibility of multisegment earthquakes on the Wasatch fault (Figure 8).

Furthermore, Pezzopane and Dawson (1996), in a summary report addressing
the Yucca Mountain Repository fault displacement hazard, describe how fault
segments were addressed in the Yucca Mountain study by CRWMS M&O (1998). In
an attempt to define fault segments that may rupture together, Pezzopane and Dawson
(1996) defined fault segments on the basis of discontinuities in the geometry of
normal faults.

With this background information, this study considered characteristic and non-
characteristic, or single segment and multisegment, models. The single and
multisegment scenarios were taken into consideration in the logic tree by considering

the scenario of single and mulitsegment rupture. Each rupture scenario branch
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coming from the same node represents a possibility of that scenario occurring,
relative to the scenarios represented by the other branches.

The branch weight values used for each of these models are based on work done
by McCalpin and Nishenko (1996) and Chang (personal communication, 1999).
McCalpin and Nishenko estimated the probability of future large (M, >7) earthquakes
that completely ruptured each segment of the Wasatch fault. Chang (personal
communication, 1999) incorporated the contagion effects, i.e., the effect that one
segment has on the adjacent segment, or segments.

McCalpin and Nishenko’s (1996) Wasatch fault zone earthquake probability
estimates considered Poisson models, lognormal renewal models, and Weibull
renewal models, all with 20, 50, and 100 year repeat times. McCalpin and Nishenko
(1996) considered the recurrence interval data available for each segment alone and
also pooled or grouped all of the recurrence interval data into a single distribution,
under the assumption that the recurrence intervals are all part of the same population.

McCalpin and Nishenko’s (1996) study included three direct approaches for
calculating the probability of rupture: 1) regional, 2) fault-specific, and 3) segment-
specific. Based on the source of the data and the nature of this segmented-fault study,
this hazard model incorporated the segment-specific probabilities, the rupture
probability data modeled with the lognormal distribution, and an intrinsic variable, o,
equal to 0.5. McCalpin and Nishenko (1996) state that the intrinsic variability is a
parameter that describes the natural variation of recurrence intervals and is

independent of the errors associated with estimating recurrence intervals.
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McCalpin and Nisheko’s (1996) probability of rupture values used in this
study are based on a 50-year renewal interval. It should be noted that there may be
implications to using this short-term interval. As discussed previously, the frequency
of displacement events is calculated using the slip rate and recurrence interval
methods, which assumes that the “overall” rate is representative of the short-term rate.
Additional branches in the logic tree could be added, or a subsequent study could be
done to consider the implications to using these models in combination.

Finally, McCalpin and Nishenko (1996) indicate that the probability of
earthquake estimates do not account for contagion effects, which are described in the
following paragraphs.

Chang (personal communication, 1999) used McCalpin and Nishenko’s (1996)
data and applied the contagion effects to the probability of rupture values to develop
weights for each rupture scenario. Contagion is described as the ‘“nonrandom”
influence that one fault segment may have one or more adjacent or nearby fault
segments (Perkins, 1987).

From Perkins’ (1987) work, fault contagion is the current term used to
represent the process of one earthquake influencing the occurrence or initiation of
another earthquake on an adjacent fault segment or nearby fault. The idea of
contagion refers not only to one segment initiating a fault rupture on an adjacent
segment, but also to the effects on stress levels in adjacent or nearby faults.

Cornell and others (1993) developed a model to evaluate the earthquake
recurrence processes and fault segment interaction. Cornell and other’s (1993) single
segment model assumes that individual fault segments are independent of adjacent

segments and are surrounded by nonslipping segments; whereas their multisegment
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model is are dependent upon fault segment interaction. Cornell and others (1993)
further describe that for a multisegment scenario, the stress loading and unloading
effects on a fault segment from adjacent fault segment rupture may influence a single
segment both positively and negatively, meaning the accumulated stress is either
increased or decreased, respectively. Cornell and others (1993) suggest that positive
interactions will typically reduce the times between events on any segment and
negative interactions will typically increase the times between events. The variable
effect of fault contagion can be determined and represented with contagion values or
factors.

In order to account for the uncertainties associated with contagion effects, both
single segment and a multisegment models were included in the logic tree uncertainty
calculations. The single segment model does not consider fault contagion, but takes
into account only the variables and parameters associated with individual segments,
(i.e., the characteristic model) meaning that the segments will behave independent of
one another. The single-segment approach assumes that the entire length of the
discrete fault will rupture and will not cross fault segment boundaries, nor will it
affect recurrence intervals of adjacent segments.

The multisegment model considers fault contagion by taking into account the
possibility of rupture across the segment boundaries during a single event and for the
rupture of one fault to affect the stress level in adjacent segments. With this, the
rupture of either of the adjacent fault segments may affect a single fault segment or
there may be a combined effect from both of the adjacent segments. The contagion

values used in the logic tree were provided by Chang (personal communication, 1999)
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and take each of these scenarios into consideration (Table 4). The branch weight
values represent the possibility that the adjacent fault segment or segments will affect
any single segment. Historical information and work by Chang (1998) has shown that
the energy released by the initiating segment dissipates in approximately 15
kilometers (this is independent of the segment length). Thus, the model assumes full
rupture of the initiating segment and initiation of and rupture on 15 kilometers on the
adjacent segment or segments (Figure 9).

These normalized weights for each of the fault rupture scenarios were
incorporated into the first branch of the logic tree (Fault Rupture Scenario). Note that

the sum of the normalized weights for each segment is one.

Rupture Length
f f
15 km Initiating 15 km
Segment

Figure 9. Cartoon illustration of multisegment rupture. Fault initiation
on main segment and 15 kilometers of adjacent segment or segments.
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TABLE 4

Normalized weights for various rupture scenarios on the Wasatch fault

Rupturing fault Rupture Scenario Normalized
segment weights™*
Rupturing segment initiating rupture on closest 15
km of adjacent fault segment(s) (percent of adjacent

segment length shown)*
Brigham City Brigham City alone 0.953
Brigham City and Weber (25%) 0.047
Weber Weber alone 0.878
Weber and Brigham City (39% ) 0.014
Weber and Salt Lake City (33%) 0.014
Weber and Brigham City and Salt Lake City 0.054
Salt Lake City Salt Lake City alone 0.937
Salt Lake City and Weber (25%) 0.025
Salt Lake City and Provo (21%) 0.012
Salt Lake City and Weber and Provo 0.026
Provo Provo alone 0.945
Provo and Salt Lake City (33%) 0.009
Provo and Nephi (38%) 0.008
Provo and Salt Lake City and Nephi 0.038
Nephi Nephi alone 0.971
Nephi and Provo (21%) 0.029

*Study considers full rupture of initiating fault segment with simultaneous rupture
initiation on closest 15 kilometers of adjacent segment(s).

** Weight values calculated from W. Chang (personal communication, 1999) based on
probability of segment rupture values from McCalpin and Nishenko (1996). From
McCalpin and Nishenko (1996) values are based on lognormal distribution with o = 0.5
and 50 year repeat time.
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Frequency of Displacement Events

As discussed earlier, the frequency of displacement events, Apz, was used to
calculate the annual frequency of exceedance and was calculated by one of two
methods: 1) fault slip rate and 2) recurrence interval. Each of these methods was
considered in the logic tree calculations. Based on the accuracy of the trench
information available and the relative certainties in the slip rate and recurrence
interval values (Table 3), the slip rate method received a relative weight of 0.70 and
the recurrence interval received a relative weight of 0.30. Obviously, these two total
unity.

Again, it is noted that there are other methods for evaluating the frequency of
displacement events; however, only the slip rate and recurrence interval methods were

considered in this study.

Normalizing Variable
The determination and use of the displacement normalizing variables D,,, and
D,,.. were discussed in detail earlier in this report. These variables were used to
normalize the displacement data for the determination of the cumulative distribution
function. In the logic tree, each of these normalizing variables received a weight of
0.5, thus inferring that each of these normalizing variables is equally as likely to

represent the most accurate method of normalizing the fault displacement.
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Sample Logic Tree Calculation
To illustrate the function of the logic tree, this section of the report
demonstrates the logic tree calculations for one of the logic tree branches used in this
study. Figure 10 shows the Brigham City segment branch of the Wasatch fault
displacement hazard logic tree (see Appendix A). Take, for instance, the top (or first)
branch shown in Figure 10. This branch accounts for the full rupture of the Brigham
City segment alone (no contagion effects), slip rate frequency estimation, and

normalizing using the average displacement.

Fault Rupture Frequency Normalizing
Segment Scenario Estimation Variable

Day. (0.50)

Slip

Brigham (0.70) Dy (0.50)
City Alone

(0.953)

Dayg (0.50)

Recurrence
Interval

Brigham City

Brigham City +
15km of Webe
(0.047)

Recurrence
Interval

(030) Dmux (050)

Figure 10. Brigham City segment branch of the Wasatch fault
displacement hazard tree used for sample calculation.
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If the top branch of the Brigham City segment is followed through, the

calculations are as follows:

(Probability of Rupture) x (Frequency Estimation) x (Normalizing Variable) =

1953 x 0.70 x 0.50 = 0.334.

Now follow the last branch of the Weber segment. This branch accounts for
the full rupture of the Brigham City segment and initiation of rupture on the closest
15 kilometers of the Weber segment, recurrence interval frequency estimation, with
the maximum displacement as the normalizing variable. These calculations are as

follows:

(Probability of Rupture) x (Frequency Estimation) x (Normalizing Variable) =

0.047 x 0.30x 0.50 = 0.007.

Notice that these two branches are the extreme values; i.e., the maximum and
minimum values for the Brigham City segment branch. As this example illustrates,
the uncertainty values calculated from the logic tree vary substantially. The relative
weights assigned to the individual branches can make a substantial impact on the

overall branch calculations.
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FAULT DISPLACEMENT RESULTS FOR SEGMENTS

Brigham City Segment

Brigham City Segment Fault Information

The Brigham City segment is located at the northern-most end of the Wasatch
Fault and is estimated to be 38 kilometers in length (Table 2). There is documented
displacement data from two trenches or exposed sites (Figure 1). Based on the
elliptical fault displacement distribution along the length of the fault used by Chang
and Smith (1998) and considering a single segment scenario, the maximum
displacement is located at the midpoint of the fault and is estimated to be 1.7 meters
(mean value) and the average displacement located at the midpoint of the fault was
estimated to be 1.2 meters (mean value). These maximum and average displacements
correlate to M; 7.0 and M, 6.9 earthquakes, respectively, as described by an empirical
scaling relationship for normal faults derived by Mason (1996) (Appendix B). This

relationship is given by:

M, = 0.55log(DL) + 5.95. [10]

where D is the fault displacement and L is the fault length From recurrence data

calculations for the Wasatch fault done by Chang and Smith (1998) and assuming a
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one to one relationship between M, and M,,, the annual frequency of a M, 7.0 and 6.9
earthquake is 8.93x10™* and 2.32x107, respectively, for a single segment model. For a
multisegment model, Chang and Smith (1998) shows the annual frequency to be
1.43x10° and 1.96x107, respectively.

Based on the results of McCalpin and Nishenko (1996) the most recent faulting
event on this segment was 2125 + 104 years before present, which, relative to the

other Wasatch fault segments, is a much longer period of time since the last event.
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Weber Segment

Weber Segment Fault Information

The Weber Segment is located between the Brigham City and Salt Lake City
segments (Figure 1). Paleoseismic data indicate that the Weber segment is 61
kilometers in length (Table 2). The last documented event on the Weber segment was
1016 + 62 years before present (Table 1). Chang and Smith’s (1998) elliptical fault
displacement model estimates that the mean maximum displacement at the midpoint
of the fault is 2.5 meters whereas the mean average displacement at the same position
on the fault is 1.7 meters. According Equation [10], as defined by Mason (1996)
(Appendix B), the maximum and average displacements correlate to M, 7.2 and M, 7.1
seismic events, respectively. From Chang and Smith (1998), these magnitudes relate
to an annual frequency of zero and 5.36x10™, for the single segment model and for

the multisegment model the frequencies are 5.36x10™ and 8.93x10™, respectively.

Weber Segment Fault Displacement Hazard Results

This segment has adjacent segments on both ends; therefore contagion effects
were considered for each of the adjacent segments alone and in combination. With
this, four scenarios were considered for this segment. The four scenarios are shown
in the logic tree in Appendix A. Full rupture of the Weber segment alone (61
kilometers) was considered. Full rupture on the Weber segment with initiation of
rupture on the closest 15 kilometers of the Brigham City or Salt Lake City segments
were two options considered (76 kilometers). The final consideration was the

scenario of full rupture on the Weber segment and simultaneous initiation of the
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closest 15 kilometers on both the Brigham City and Salt Lake City segments (91
kilometers).

The full set of hazard curves for the Weber City segment is shown in Figure 13
and 14. These curves resulted from the calculations that considered D,,, and D, as
the normalizing variable. The results from all of the various scenarios from the

Weber segment branch of the logic tree are captured in these curves.

Salt Lake City Segment

Salt Lake City Segment Fault Information

The Salt Lake City segment is positioned between the Weber segment to the
north and the Provo segment to the south (Figure 1). Paleoseismic events on this
segment indicate that it is 46 kilometers in length (Table 2). The South Fork Dry
Creek (SFDC) trench is the only trench in this segment with documented
displacement data (Figure 1). Chang and Smith (1998) documents work by McCalpin
and Nishenko (1996) which indicates that the most recent event on the Salt Lake City
Segment was 1230 + 62 years before present time. As was calculated for each
segment, based on the elliptical distribution described by Chang and Smith (1998),
the maximum and average displacements at the midpoint of the length of the Salt
Lake segment is 2.0 meters and 1.4 meters, respectively. These displacements
correlate to M 7.0 and M| 6.9 earthquakes, as related by Mason (1996) (Appendix B).
Again, as for the other single segment models, a M, 7.0 and M, 6.9 earthquake relate

to an
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annual frequency of 8.93x107 and 2.32x107, respectively, and 1.43x10” and 1.96x10"
3 for the multisegment model, respectively (Chang and Smith, 1998).

As was the case with the Weber segment, the Salt Lake City segment has
adjacent segments on both ends; therefore contagion effects were considered for each
of the adjacent segments alone and in combination. With this, four scenarios were
considered for this segment (see Appendix A). Full rupture of the Salt Lake segment
alone was considered (46 kilometers). Full rupture on the Salt Lake City segment
with initiation of rupture on the closest 15 kilometers of either the Weber or Provo
segments were two options considered (61 kilometers each). The final consideration
was the scenario of full rupture on the Salt Lake City segment and simultaneous
initiation of the closest 15 kilometers on both the Weber and Provo segments (76
kilometers).

The full set of hazard curves for the Salt Lake City segment are shown in
Figures 15 and 16. These curves resulted from the calculations that considered D,
and D, as the normalizing variable. The results from all of the various scenarios

from the Salt Lake City segment branch of the logic tree are captured in these figures.

Provo Segment

Provo Segment Fault Information
The Provo segment is positioned between the Salt Lake and Nephi segments.
paleoseismic data suggests that the Provo segment is 40 kilometers in length (Table 2)
with the last recorded event occurring 618 + 30 years before present (Table 1). It

should be noted that this interval of time since the last is event is substantially less
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than the other subject segments. Based on Chang and Smith’s (1998) proposed
elliptical displacement distribution model, at the midpoint of the fault the average
displacement is estimated to be 2.1 meters and the maximum displacement is
estimated to be 3.0 meters. These values correspond to a M, 7.1 earthquake for the
average displacement and a M, 7.2 earthquake for the maximum displacement
according to the empirical relationship developed by Mason (1996). From Chang and
Smith (1998) M, 7.2 and M, 7.1 earthquakes correlate with approximate annual
frequencies of zero and 5.36x10™ for the single segment model, respectively, and

5.36x10™* and 8.93x10™* for the multisegment model, respectively.

Provo Segment Fault Displacement Hazard Results

As was the case with the Weber and Salt Lake City segments, this segment has
adjacent segments on both ends; therefore contagion effects were considered for each
of the adjacent segments alone and in combination. With this, four scenarios were
considered for this segment. The four scenarios are shown in the logic tree in
Appendix A. Full rupture of the Provo segment alone was considered (70
kilometers). Full rupture on the Provo segment with initiation of rupture on the
closest 15 kilometers of the Salt Lake City or Nephi segments (85 kilometers each)
were two options considered. The final consideration was the scenario of full rupture
on the Weber segment and simultaneous initiation of the closest 15 kilometers on

both the Salt Lake City and Nephi segments (100 kilometers).
The full set of hazard curves for the Provo segment is shown in Figures 17 and

18. These curves resulted from the calculations that considered D,,, and D, as the
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normalizing variable. The results from all of the various scenarios from the Salt Lake

City segment branch of the logic tree are captured in these curves.

Nephi Segment

Nephi Segment Fault Information

The Nephi segment, located to the south of the Provo segment, was the southern
most end segment considered in this study (Figure 1). This is 40 kilometers long
(Table 2). The most recent event on this segment was1148 + 68 years before present
(Table 1). The maximum and average fault displacements at the midpoint of the
segment were estimated to be 2.4 meters and 1.7 meters, respectively. Again, Chang
and Smith (1998) estimated the maximum fault displacement and the average
displacement value were estimated from the maximum value, assuming an elliptical
fault displacement distribution. These displacement values correlate to M 7.0 and M;
6.9 earthquakes (Mason, 1996), respectively, with annual frequencies of 8.93x10™
and 2.32x10” based on Chang and Smith’s (1998) single segment model. For the
multisegment model, these magnitudes correspond to annual frequencies of 5.36x10™

and 8.93x107, respectively.

Nephi Segment Fault Displacement Hazard Results
As was the case with the Brigham City Segment, the Nephi segment is an end
segment and therefore only two scenarios were considered. The first is the full

rupture of the Nephi segment alone (40 kilometers). The second is the full rupture of
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the Nephi segment and consideration of the initiation of simultaneous rupture on the
closest 15 kilometers on the Provo segment to the north (55 kilometers).

The full set of hazard curves for the Nephi segment are shown in Figures 19 and
20. These curves resulted from the calculations that considered D,,, and D, as the
normalizing variable. The results from all of the various scenarios from the Nephi

segment branch of the logic tree are captured in these curves.
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DISCUSSION OF RESULTS

The values from which the hazard curves (Figures 11-20) were generated are
tabulated in Appendix D. For a comparative review of the information calculated in
the hazards curves, Table 5 and Figures 21, 22, 23 and 24 were generated. They
display the relative annual frequency of exceeding 1, 2, and 3 meters of displacement
on each if the five subject segments of the Wasatch fault using four variations of the
model. They allow for a relative survey of the frequency of exceeding the specified
displacements between each of the five subject fault segments.

Figure 21 accounts for the set of calculations that considered the single segment,
slip rate model, with D,,, as the normalizing factor. Figure 22 accounts for the set of
calculations that considered the single segment, recurrence interval model, with D,,,
as the normalizing factor. Figure 23 accounts for the set of calculations that
considered the single segment, slip rate model, with D,,,, as the normalizing factor.
Finally, Figure 24 accounts for the set of calculations that considered the single
segment, recurrence interval model, with D,,,, as the normalizing factor. Note that the
values displayed on these four summary plots relate to the displacement at the
midpoint of length of the fault segment and values for other locations along the fault

can be extrapolated using the elliptical displacement distribution discussed earlier.
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For a relative review of the multisegment model, Table 6 and Figure 25 show the relative
frequencies of exceeding 2 meters of displacement for the Salt Lake City segment and
considers the single segment and multisegment models for the Salt Lake City segment.
For simplicity, only the results from the model that used the slip rate to estimate the
recurrence of earthquakes and D,,, to normalize the fault displacement data are
displayed.

Similar figures could be developed for the other segments to display the variations
of this model. The annual frequency of exceedance values for 1, 2, and 3 meters of

displacements for all of the segments and models are tabulated in Appendix C.

TABLE 6

Summary of results comparing annual frequency of exceeding
2 meters of displacement for the Salt Lake City segment*

Rupture Annual Frequency of Exceeding
Scenario 2 meters of displacement™*
SLC alone 1.33x10”
SLC and 15 km of WB 3.50x107
SLC and 15 km of PV 1.75x107
SLC and 15 km of WB and PV 3.70x107

* See Figure 25
**Annual frequency values based on slip rate model and displacement values
normalized with the average displacement
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From inspection of Figures 21, 22, 23, and 24, the expected trend of decreasing
annual frequency of exceedance with increasing fault displacement is clearly
displayed. Additionally, for each model used for evaluation, the frequency of
exceeding 1 meter of displacement is consistent across all five segments (i.e., they are
all on the same order of magnitude). However this value does generally vary by an
order of magnitude when using the slip rate model versus the recurrence interval
model (10 /year versus 107 /year, respectively).

The frequency values for exceeding 2 meters are relatively consistent across the
segments; they vary by one order of magnitude between the different segments. As
was the case with 1 meter of displacement, with 2 meters there is also an approximate
variation of one order of magnitude when comparing the values calculated using the
slip rate model to those calculated using the recurrence interval model.

In contrast to the extremely consistent (same order of magnitude) frequency
estimates across the segments for 1 meter and even the relatively consistent (within
an order of magnitude) frequency estimates for 2 meters of displacement, the
frequency estimates for 3 meters of displacement vary substantially between the
different segments (~10° — ~10). Again values calculated using the slip rate model
are consistently approximately an order of magnitude higher than for those values
calculated using the recurrence interval model.

To substantiate the results of this model, a comparison of these results was
made to the expected annual frequency values from Chang and Smith (1998)
previously discussed for each segment. Between all of the segments, the expected

average and maximum displacement values vary between 1.2 and 3.0 meters, which
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correspond to earthquakes of M; 6.9 and M, 7.2 (Mason, 1996) (Appendix B),
respectively, and single segment model annual frequencies of 10 and zero (Chang
and Smith, 1998), respectively. For the single segment model used in this study, the
range of annual frequencies is 10™ to 10 for displacement values between 1 and 3
meters of displacement (Figure 21, 22, 23, and 24, Table 5, and Appendix C). This
yields a high correlation (on the same order of magnitude) between Chang and
Smith’s (1998) single segment model annual frequency values and the values
generated by this model.

Less specific comparisons were made to existing PSHA studies on the
Wasatch fault. Youngs and others (1987) describe the recurrence rate of a M, 7
earthquake to be on the order of 10™*/year based on a single segment model of the
Wasatch fault. Wong and others (1995) found similar results. Their estimated return
period for a M, 7 earthquake (~10"*/year) is consistent with the single segment results
of this study.

A similar, substantiating comparison was made for the multisegment model.
From the previous discussion of annual frequency values for the expected average and
maximum displacement for each segment, the range of 1.2 to 3.0 meters of
displacement correspond to Chang and Smith’s (1998) multisegment model annual
frequencies of 10~ and 10, respectively. The corresponding values from this study’s
multisegment model are 107 to 107'°. In contrast to the single segment model, this
yields a low correlation (vary by several orders of magnitude) between Chang and
Smith’s (1998) multisegment model annual frequency values and the values generated

by this model.
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The low correlation between this and Chang and Smith’s (1998) multisegment
model may, in part, be due to the disparities in the models used. The annual
frequencies generated by this study are dependent upon the probability of segment
rupture (single segment) and rupture across segment boundaries (multisegment). The
probability of rupture across the segment boundaries was substantially lower than
those for the single segments (Table 4). In contrast, Chang and Smith’s (1998) annual
frequencies are calculated based on magnitude and its scaled dependency upon
rupture length and fault displacement.

The results of this study’s multisegment model are not consistent with current
empirical length and displacement to magnitude scales. The rupture scenario weights
for rupture across segment boundaries limits this model; the frequency of rupture
across segments is less likely to occur than a M,, 7 earthquake, regardless of segment

boundaries. With this, a direct comparison should and cannot be made.
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CONCLUSIONS

To understand the results of this study, a comparison was made between the
annual frequencies of exceeding 1, 2, and 3 meters of displacement. Depending on
which specific scenario is considered and the specific location along the Wasatch
fault, the results from this study yield annual frequency of exceeding 1 meter of
displacement between the range of 10“/year to 107/year. For 2 meters of
displacement the annual frequency of exceedance ranged between 107 /year to 10~
/year. For 3 meters, the values ranged between 10 /year to 10" /year.

The results suggest that the frequency of exceeding 3 meters of displacement
is very dependent upon the specific fault segment length; whereas the frequency of
exceeding 1 or 2 meters of displacement is relatively independent of the specific
segment length. This comparative trend is independent of the model used (e.g.,
single segment, multisegment), but is more likely dependent up the direct empirical
scaling relationship between fault length and fault displacement.

In contrast, this study shows that the actual annual frequencies of exceedance
values are dependent upon the uncertainties in the source and interpretation of the
variables in the calculations. When looking at the calculated results from the various
branches of the logic tree, there appears to be no significant variance in the frequency

estimates when using D,,, as the normalizing variable versus using D,,, as the
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normalizing variable. To the contrary, there is at least one order of magnitude
variance in the frequency estimates when using the slip rate method for determining
the frequency of events, versus the recurrence interval method for estimating the
frequency of events. This calculated discrepancy is obviously, in part, due to the
relative weights assigned to the frequency of events branch of the logic tree. The
results of this study clearly show the role and importance of the uncertainties as they
are incorporated into the hazard calculations.

A high correlation (same order of magnitude) was found between the
concluding values from this study’s single segment model and other existing single
segment models (Chang and Smith, 1998; Youngs and others, 1987; Wong and
others, 1995). Thus, this high correlation substantiates the results of the single
segment model.

A considerable discrepancy was found, however, between this study’s
multisegment results and those from Chang and Smith (1998). The low correlation
(vary by several orders of magnitude) is most likely due to the selection of model
parameters. This multisegment model is dependent upon the probability of rupture
across segments and Chang and Smith’s (1998) is dependent upon magnitude-length
scaling. A comparison and correlation between the results of the two models is
perhaps a subject for further consideration. The results of this should be considered
with the input and model parameters in mind.

Despite the low probability of annual exceedance values (10°-10""/year)
generated by the multisegment model, it is likely of most importance for assessing the

displacement hazards on the Wasatch fault. The longer fault rupture lengths
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associated with the multisegment model combined with the scaled fault displacement
values, yield a higher risk of significant damage to structures that cross the fault.

An important point to note is that this study considered only select scenarios
when developing the hazard curves. Heavy emphasis should be placed on the fact
that any number of scenarios could potentially be evaluated. The methods used to
develop this PDHA model allows the user to incorporate as few or as many scenarios
as are necessary for their purpose.

A PDHA study has not been done on the Wasatch Front until now. With
respect to the Wasatch Front, the hazards associated with fault displacement will have
a significant impact on the Wasatch Front population as a whole. The Wasatch Front
is unique in that the majority of the critical lifeline utilities that serve the Wasatch
Front cross the fault. Compare this to other seismically active communities like Los
Angeles or San Francisco where the lifeline utilities are much more distributed around
the communities.

Along these same lines, but outside the scope of this study is the consideration
of the effects of the Wasatch fault on its associated distributed faults. A scaled
comparison of the effects of fault displacement hazards on the West Valley and other
valley faults would show the potential impact that activity on the Wasatch fault might
have on these secondary faults and their associated impact on utilities. The results
from such a study would further substantiate the hazards associated with displacement
on the Wasatch fault.

Given the annual frequency of exceedance results from this study, the

distribution of the Wasatch Front population, and the proximity of the lifeline utilities,
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the Wasatch fault displacement hazards could have a much more profound effect than
considered heretofore. Disruption of the Wasatch Front’s critical lifeline utilities from
fault displacement may very well have as large of an impact on a the Wasatch Front
population as ground shaking (although the nature, duration, and severity of impact
may vary).

The PDHA, in combination with a PSHA, exposure analysis, and review of the
economic impact, can be used to evaluate the overall risk due to fault displacement

hazards on the Wasatch fault.
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APPENDIX A

WASATCH FAULT DISPLACEMENT HAZARDS

LOGIC TREE
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Fault Segment Rupture Frequency Doy Normshzing
Scenario Erdiration Sworee Farishle

BC akoe 9 — =@ — = =@ — -

Brgham City (BC)

BC and WB .___.____.___
WE aone ._ — _._ — _._ — —
WE and 8C .- — —’ S + ——

Weber |'WB)

WEB ad SLC

- -0 - — 9 ——
WE ard BC and SLC .— — —. - -‘- -

c

SLC ghoem VR W A ———

SLC and WB @ — =@ = = = = =

St Lake City (SLC)

SLC and PV ._ _— _.. —_ _._ [Re—

SLC and WB and PV

PV sone ._ _ _._ —_ _._ - e

Wasatch Fault

PV ad SLC ._ = —.. — _.- [

Proval (PV)

PV ad NP

= = =@ = = = = -

PV ard SLC and NP

NP sore ‘_ — _‘_ —_ _._ -— -

Nephi (NP} Segment

NP and PV ._ = -., P — -.- — —

Figure 26. General layout for the Wasatch fault displacement hazard logic tree.
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Fault Segment Rupture Frequency Data Normalizing

Scenario Estimation Source Variable
Slip Trench Davg (0.5)

Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5)

BC alone (0.953) 0.5
0.95274 Recurrence Trench Davg (0.5)

Interval (0.3) Data (1.0) 05
0.3 1.0 Dmax (0.5)

Brigham City (BC) 0.5
Slip Trench Davg (0.5)

Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5)

BC and WB (0.047) 0.5
0.04726 Recurrence Trench Davg (0.5)

Interval (0.3) Data (1.0) 05
0.3 1.0 Dmax (0.5)

0.5
Slip Trench Davg (0.5)

Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5)

WB alone (0.878) 0.5
0.87785 Recurrence Trench Davg (0.5)

Wasatch Fault Interval (0.3) Data (1.0) 05
0.3 1.0 Dmax (0.5)

0.5
Slip Trench Davg (0.5)

Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5)

WB and BC (0.014) 0.5
0.01381 Recurrence Trench Davg (0.5)

Interval (0.3) Data (1.0) 05
0.3 1.0 Dmax (0.5)

Weber (WB) 0.5
Slip Trench Davg (0.5)

Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5)

WB and SLC (0.014) 0.5
0.01410 Recurrence Trench Davg (0.5)

Interval (0.3) Data (1.0) 05
0.3 1.0 Dmax (0.5)

0.5
Slip Trench Davg (0.5)

Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5)

WB and BC and SLC (0.054) 0.5
0.05417 Recurrence Trench Davg (0.5)

Interval (0.3) Data (1.0) 05
0.3 1.0 Dmax (0.5)

Figure 27. Detailed Wasatch Fault displacemant hazard logic tree.
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Fault Segment Rupture Frequency Data Normalizing
Scenario Estimation Source Variahle
.
l Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
l 0.7 * 1.0 < Dmax (0.5)
| SLC alone (0.937) 0.5
0.93666 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
0.3 ® 1.0 < Dmax (0.5)
0.5
Wasatch Fault Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
0.7 * 1.0 < Dmax (0.5)
SLC and WB (0.025) 0.5
0.02471 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) : 05
0.3 * 1.0 Dmax (0.5)
Salt Lake City (SLC) 0.5
Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
0.7 * 1.0 < Dmax (0.5)
SLC and PV (0.012) 0.5
0.01225 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
0.3 * 1.0 < Dmax (0.5)
0.5
Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
L g ‘
0.7 1.0 Dmax (0.5)
SLC and WB and PV (0.026) 0.5
0.02638 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
0.3 ® 1.0 < Dmax (0.5)
0.5
Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
@ ‘
0.7 1.0 Dmax (0.5)
PV alone (0.945) 0.5
0.94509 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
0.3 ® 1.0 < Dmax (0.5)
0.5
Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
0.7 1.0 < Dmax (0.5)
PV and SLC (0.009) 0.5
0.00861 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 0.5
I 03 1.0 < Dmax (0.5)
| 0.5
1

Figure 27. Detailed Wasatch Fault displacemant hazard logic tree CONTINUED
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Fault Segment Rupture Frequency Data Normalizing
Scenario Estimation Source Variable
. .
Slip Trench Davg (0.5)
' I Rate (0.7) Data (1.0) 05
L g
| I 0.7 1.0 Dmax (0.5)
| | PV and NP (0.008) 0.5
0.00841 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
. 4
Provo( (PV) 0.3 1.0 Dmax (0.5)
0.5
Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
@
0.7 1.0 Dmax (0.5)
PV and SLC and NP (0.038) 0.5
0.03789 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
° .
Wasatch Fault 0.3 1.0 Dmax (0.5)
0.5
Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
<
0.7 1.0 Dmax (0.5)
NP alone (0.971) 05
0.97060 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
.
0.3 1.0 Dmax (0.5)
Nephi (NP) Segment 0.5
Slip Trench Davg (0.5)
Rate (0.7) Data (1.0) 05
L g
0.7 1.0 Dmax (0.5)
NP and PV (0.029) 0.5
0.02940 Recurrence Trench Davg (0.5)
Interval (0.3) Data (1.0) 05
@
0.3 1.0 Dmax (0.5)

0.5

Figure 27. Detailed Wasatch Fault displacemant hazard logic tree CONTINUED
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APPENDIX B

COMPARISON OF EARTHQUAKE MAGNITUDE

BASED ON EMPIRICAL RELATIONSHIPS
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TABLE 7

Comparison of earthquake magnitudes based on empirical relationships

Rupture Scenario* | D+ (@) [ L am) | Mswy | - Mwo) | MwD). |
BC alone 1 38 6.82 6.61 6.95
2 38 6.98 6.82 6.95
3 38 7.08 6.95 6.95
BC and 15 km of WB 1 33 6.90 6.61 7.14
2 53 7.06 6.82 7.14
3 53 7.16 6.95 7.14
WB alone 1 61 6.93 6.61 7.22
2 61 7.10 6.82 7.22
3 61 7.19 6.95 7.22
WB and 15 km of BC or 1 76 6.98 6.61 7.34
WB and 15 km of SLC 2 76 7.15 6.82 7.34
3 76 7.25 6.95 7.34
WB and 15 km of BC and 1 91 7.03 6.61 7.45
15 km of SLC 2 91 7.19 6.82 7.45
3 91 7.29 6.95 7.45
SLC alone 1 46 6.86 6.61 7.05
2 46 7.03 6.82 7.05
3 46 7.13 6.95 7.05
SLC and 15 km of WB or 1 61 6.93 6.61 7.22
15 km of PV 2 61 7.10 6.82 7.22
3 61 7.19 6.95 7.22
SLC and 15 km of WB and 1 76 6.98 6.61 7.34
15 km of PV 2 76 7.15 6.82 7.34
3 76 7.25 6.95 7.34
PV alone 1 70 6.96 6.61 7.30
2 70 7.13 6.82 7.30
3 70 7.23 6.95 7.30
PV and 15 km of SLC or 1 85 7.01 6.61 7.41
15 km of NP 2 85 7.18 6.82 741
3 85 7.27 6.95 741
PV and 15 km of SLC and 1 100 7.05 6.61 7.50
15 km of NP 2 100 7.22 6.82 7.50
3 100 7.31 6.95 7.50
NP alone 1 40 6.83 6.61 6.97
2 40 7.00 6.82 6.97
3 40 7.09 6.95 6.97
NP and 15 km of PV 1 55 6.91 6.61 7.16
2 55 7.07 6.82 7.16
3 55 7.17 6.95 7.16

* See Figure 1

*#* D = vertical fault displacement; L = surface rupture length

(1) Ms = 0.55Log(DL) + 5.95 (Mason, 1996)

(2) Mw = 0.71Log(D) + 6.61 (Wells and Coppersmith, 1994)
(3) Mw =1.32Log(L) + 4.86 (Wells and Coppersmith, 1994)
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APPENDIX C

SUMMARY OF RESULTS COMPARING ANNUAL

FREQUENCY OF EXCEEDING 1, 2, AND 3 METERS

OF DISPLACMENT USING VARIOUS MODELS
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APPENDIX D

WASATCH FAULT DISPLACEMENT HAZARD

EXCEL PROGRAM SPREADSHEETS
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I;ASATACH FAULT DATA
D(m) = mean value of original fault displacement data
Drmax = average value of maximum displacement valuefor each segment from
elliptical distribution (Chang and Smith, 1998)
Davg = average displacement values under elliptical curve
SR = mean value of slip rate (Chang and Smith, 1998)
RP = mean value of return period (Chang, 1999)
eq = SR/Davg or 1/RP

IDETERMINE THE CUMULATIVE DISTRIBUTION FUNCTION

STATISTICAL DISTRIBUTION
Cumularive %
* =HISTOGRAM(D/Dnorm, Cumulative Percentage)

EMPIRICAL DISTRIBUTION
Gamma Distribution
* =GAMMADIST[D/Dnorm. a. b, truef
where a={mean(D/Dnorm)/stdev(D/Dnorm)]*2 and b=a/mean(D/Dnorm)

Normal Distribution
* —=NORMDIST[D/Dnorm, mean(D/Dnorm)), stdev(D/Dnorm), true]

* Lognormal Distribution
=NORMDIST(In(D/Dnormy, mean(InD/Dnorm), stdev(inD/Dnorm), true]

* Exponential Distribution
! —EXPONDIST[D/Dnorm mean(D/Dnorm) true)

v Ly

[P(D>d) = |-gamma [for D/Dnorm]

P(D>d) = 1-lognormal [for D/Dmax]
[apply empirical cumulative distributions to individual segment
displacment distributions]

Frequency of Exceedance = P(D>d)*freq*Logic Tree Value {for each segment]

Plot d versus Frequency of Exceedance [for each segment] 1
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Fault Segment R upture Frequency Data Normalizing Jealculated
Scenario Estimation Source Variable weight]
Slip Trench Davg (0.5) 0.3335
Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5) 0.3335
BC alone (0.953) 0.5
0.95274 Recurrence Trench Davg (0.5) 0.1429
Interval (0.3) Data (1.0) 05
03 1.0 Dmax (0.5) 0.1429
Brigham City (BC) 0.5
Slip Trench Davg (0.5) 0.0165
Rate (0.7) Data (1.0) 05
0.7 1.0 Dmax (0.5) 0.0165
BC and WB (0.047) 0.5
0.04726 Recurrence Trench Davg (0.5) 0.0071
Interval (0.3) Data (1.0) 05
03 1.0 Dmax (0.5) 0.0071
0.5
Slip Trench Davg (0.5) 0.3072
Rate (0.7) Data (1.0) 0.5
0.7 1.0 Dmax (0.5) 0.3072
WB alone (0.878) 0.5
0.87785 Recurrence Trench Davg (0.5) 0.1317
Interval (0.3) Data (1.0) 0.5
. .
03 1.0 Dmax (0.5) 0.1317
0.5
Slip Trench Davg (0.5) 0.0048
Rate (0.7) Data (1.0) 0.5
0.7 1.0 Dmax (0.5) 0.0048
WB and BC (0.014) 0.5
0.01381 Recurrence Trench Davg (0.5) 0.0021
Interval (0.3) Data (1.0) 0.5
03 1.0 Dmax (0.5) 0.0021
Weber (WB) 05
Slip Trench Davg (0.5) 0.0049
Rate (0.7) Data (1.0) 0.5
0.7 1.0 Dmax (0.5) 0.0049
WB and SLC (0.014) 0.5
0.01410 Recurrence Trench Davg (0.5) 0.0021
Interval (0.3) Data (1.0) 05
03 1.0 Dmax (0.5) 0.0021
0.5
Slip Trench Davg (0.5) 0.0190
Rate (0.7) Data (1.0) 0.5
0.7 1.0 Dmax (0.5) 0.0190
WB and BC and SLC (0.054) 0.5
0.05417 Recurrence Trench Davg (0.5) 0.0081
Interval (0.3) Data (1.0) 0.5
0.3 1.0 Dmax (0.5) 0.0081
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Slip Trench Davg (0.5) 0.3278
Rate (0.7) - Data (1.0) 05
/ 0.7 1.0 Dmax (0.5) 0.3278
SLC alone (0.937) 0.5
0.93666 \ Recurrence Trench Davg (0.5) 0.1405
Interval (0.3)‘ Data (1.0) 05
0.3 1.0 Dmax (0.5) 0.1405
0.5
Wasatch Fault Slip Trench Davg (0.5) 0.0086
Rate (0.7) - Data (1.0) 05
0.7 1.0 Dmax (0.5) 0.0086
SLC and WB (0.025) 0.5
0.02471 Recurrence Trench Davg (0.5) 0.0037
Interval (0.3) Data (1.0) 05
03 * 1.0 Dmax (0.5) 0.0037
Salt Lake City (SLC) 0.5
Slip Trench Davg (0.5) 0.0043
Rate (0.7) - Data (1.0) 05
0.7 1.0 Dmax (0.5) 0.0043
SLC and PV (0.012) 0.5
0.01225 Recurrence Trench Davg (0.5) 0.0018
Interval (0.3j. Data (1.0) 05
0.3 1.0 Dmax (0.5) 0.0018
0.5
Slip Trench Davg (0.5) 0.0092
Rate (0.7) . Data (1.0) 05
0.7 1.0 Dmax (0.5) 0.0092
SLC and WB and PV (0.026) 0.5
0.02638 Recurrence Trench Davg (0.5) 0.0040
Interval (OABi‘ Data (1.0) 05
0.3 1.0 Dmax (0.5) 0.0040
0.5
Slip Trench Davg (0.5) 0.3308
Rate (0.7) - Data (1.0) 05
0.7 1.0 Dmax (0.5) 0.3308
PV alone (0.945) 0.5
0.94509 Recurrence Trench Davg (0.5) 0.1418
Interval (0.3)’ Data (1.0) E
0.3 1.0 Dmax (0.5) 0.1418
0.5
Slip Trench Davg (0.5) 0.0030
Rate (0.7) - Data (1.0) 05
0.7 1.0 Dmax (0.5) 0.0030
PV and SLC (0.009) 0.5
0.00861 Recurrence Trench Davg (0.5) 0.0013
Interval (0.3j‘ Data (1.0) 05
0.3 1.0 Dmax (0.5) 0.0013
Provo( (PV) 0.5
Slip Trench Davg (0.5) 0.0029
Rate (0.7) - Data (1.0) 05
0.7 1.0 < Dmax (0.5) 0.0029
PV and NP (0.008) 0.5
0.00841 Recurrence Trench Davg (0.5) 0.0013
Interval (0A3)' Data (1.0) 05
0.3 1.0 Dmax (0.5) 0.0013
0.5
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Nephi (NP) Segment

PV and SLC and NP (0.038)

0.03789

NP alone (0.971)

0.97060

NP and PV (0.029)

0.02940

Slip Trench
Rate (0.7) Data (1.0)

0.7 1.0
Recurrence Trench
Interval (0.3) Data (1.0)

0.3 1.0

Slip Trench

Rate (0.7) Data (1.0)
. g

0.7 1.0
Recurrence Trench
Interval (0.3) Data (1.0)

@
0.3 1.0
Slip Trench
Rate (0.7) Data (1.0)
&

0.7 1.0
Recurrence Trench
Interval (0.3) Data (1.0)

0.3 1.0
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Davg (0.5)
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